Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

G. Y. S. K. Swamy* and
 K. Ravikumar

Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Correspondence e-mail: swamy@iictnet.org

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.058$
$w R$ factor $=0.193$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Hydroxy-3-methoxyphenyl)-1-phenethyl-1,2-dihydroquinazolin-4(3H)-one

In the crystal structure of the title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$, the dihydropyrimidine (DHPM) ring adopts a sofa conformation. The methoxy-substituted benzene ring is oriented equatorially and the phenylethyl group has a fully extended conformation with respect to the DHPM ring. Four adjacent molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions, generating a tetrameric unit. The crystal structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions.

Comment

Quinazolin-4(1H)-ones, commonly known as benzopyrimidones, represent an important class of heterocyclic compounds. Furthermore, 2,3-dihydro- 1 H -quinazolin-4-one derivatives are of biological and pharmaceutical importance (Bonola et al., 1968, Levin et al., 1994, Okumura et al., 1968). Structural analysis of these compounds provides an opportunity to study the biological activity and its implication for the structural requirement needed for binding to the receptors. It has been observed and reported by us (Swamy \& Ravikumar, 2005) that substitution at the C-2 position in the DHPM ring plays a crucial role in the ring conformation. In other words, the bulkiness of the substituent appears to be a necessary condition for the dihydropyrimidine (DHPM) ring to adopt a sofa conformation. In a continuation of our studies on the influence of substituents on the ring (DHPM) conformation, we have undertaken this study and report here the structural details of the title compound, (I).

(I)

The geometric parameters within the DHPM ring of (I) are affected by conjugation. The formal single bonds N1-C5 and N 2 - C3 have partial double-bond character (Table 1) (BurkeLaing \& Laing, 1976). Furthermore, the sum of the angles around atoms N 1 and N 2 are 360.0 and 351.2°, respectively, indicating $s p^{2}$ hybridization. The lengthening of the $\mathrm{C} 5-\mathrm{O} 2$ bond $[1.237$ (3) \AA] from the normal $\mathrm{C}=\mathrm{O}$ distance $(1.20 \AA)$ could be attributed to some conjugation involving atom O 2 (Tiekink, 1989). The DHPM ring is puckered in such a manner

Received 8 November 2005 Accepted 17 November 2005 Online 23 November 2005

Figure 1
The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Crystal structure of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.
of the DHPM ring. Precisely, the activity of such compounds increases with increasing planarity of the hetero ring. In the present case, Θ_{av} (the average of $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 2-$ $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4)$ is $21.8(3)^{\circ}$.

The methoxy group is not in the plane of the benzene ring to which it is attached (Table 1); the torsion angle $\mathrm{N} 2-\mathrm{C} 16-$ $\mathrm{C} 17-\mathrm{C} 18$ is $174.5(2)^{\circ}$. Benzene ring $\mathrm{C} 18-\mathrm{C} 23$ is nearly coplanar with the DHPM ring, whereas benzene ring C10-C15 is nearly perpendicular to the DHPM ring [dihedral angle $=$ 87.1 (1) ${ }^{\circ}$].

In the crystal structure, molecules are connected via N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) into $R_{2}^{2}(12)-$ type rings (Bernstein et al., 1995), which are further connected into chains by hydrogen bonds. In addition, the structure is further stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions.

Experimental

The title compound, (I), was prepared according to a literature procedure (Sadanandam et al., 1992) and was recrystallized from methanol.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=374.43$
Monoclinic, C2/c
$a=36.113$ (5) А
$b=6.8124$ (9) \AA
$c=15.931$ (2) \AA
$\beta=105.504(2)^{\circ}$
$V=3776.7$ (9) A^{3}
$Z=8$
$D_{x}=1.321 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1838 reflections
$\theta=2.3-22.7^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.22 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
2519 reflections with $I>2 \sigma(I)$
detector diffractometer
ω scans
Absorption correction: none
11047 measured reflections
4349 independent reflections
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-39 \rightarrow 45$
$k=-8 \rightarrow 8$
$l=-20 \rightarrow 21$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1049 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.193$
$S=1.00$
4349 reflections
256 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{N} 2$	$1.395(3)$	$\mathrm{C} 5-\mathrm{N} 1$	$1.342(3)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	$179.2(2)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 2$	$29.1(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$-12.7(3)$	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$-51.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	$-14.4(3)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{O} 3-\mathrm{C} 24$	$12.2(4)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$45.5(3)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H}^{\prime} \cdots \mathrm{O}^{1}{ }^{\mathrm{i}}$	0.86	2.24	$2.952(3)$	140
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$	0.82	1.97	$2.734(2)$	154
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.65	$3.564(3)$	167
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	3.01	3.78	141
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg}^{\mathrm{v}}$	0.93	2.85	3.62	142

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$; (iii) $x, y+1, z$; (iv) $-x+\frac{1}{2}, y+\frac{3}{2},-z-\frac{1}{2}$; (v) $x,-y, z-\frac{1}{2}$. Note: $C g 1$ is the centroid of the $\mathrm{C} 10-\mathrm{C} 15$ ring and Cg2 is the centroid of the C18-C23 ring.

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{O})$ for methyl, imino ($-\mathrm{NH}-$) and hydroxy H atoms, and $1.2 U_{\text {eq }}(\mathrm{C})$ for other H atoms. The OH group was allowed to rotate but not to tip relative to the $\mathrm{C}-\mathrm{O}$ bond.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

The authors thank Dr J. S. Yadav, Director, IICT, Hyderabad, for his kind encouragement.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bonola, G., Da Re, P., Magistretti, M. J., Massarani, E. \& Setnikar, I. (1968). J. Med. Chem. 11, 1136-1139.
Burke-Laing, M. \& Laing, M. (1976). Acta Cryst. B32, 3216-3224.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Chandra Mohan, K., Ravikumar, K., Shetty, M. M. \& Velmurugan, D. (2003). Z. Kristallogr. 218, 46-55.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Levin, J. I., Chan, P. S., Bailey, T., Katocs, A. S. Jr \& Venkatesan, A. M. (1994). Bioorg. Med. Chem. Lett. 4, 1141-1146.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Okumura, K., Oine, T., Yamada, Y., Hayashi, G. \& Nakama, M. (1968). J. Med. Chem. 11, 348-352.
Sadanandam, Y. S., Shetty, M. M. \& Diwan, P. V. (1992). Eur. J. Med. Chem. 27, 87-92.
Sheldrick, G. M. (1997). SHELXS97 AND SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Swamy, G. Y. S. K. \& Ravikumar, K. (2005). J. Chem. Crystallogr. 3, 183189.

Tiekink, E. R. T. (1989). Z. Kristallogr. 187, 79-84.

